
1 | P a g e

STAR In-Road Electric Vehicle Charging for
Parked Vehicles

Prepared by:

Bilal Abdulhamed
Hootan Alavizadeh

Tyler Ricketts
Brandon Schneider

Dr. Hamed Attariani
Dr. Weisong Wang
Dr. Mike Saville

Prepared for:
The Ohio Department of Transportation, Office of Statewide Planning &

Research

Project ID Number: 118511

September 2023

Final Report

2 | P a g e

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

FHWA/OH-2023-28

4. Title and Subtitle 5. Report Date

STAR In-Road Electric Vehicle Charging for Parked Vehicles

September 2023

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Bilal Abdulhamed, Hootan Alavizadeh, Tyler Ricketts,
Brandon Schneider, Dr. Hamed Attariani, Dr. Weisong
Wang, Dr. Mike Saville

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)

Wright State University, Department of Mechanical and
Materials Engineering, Department of Electrical
Engineering, Dayton, OH 45435

11. Contract or Grant No.

38584

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered

Ohio Department of Transportation
1980 West Broad Street
Columbus, Ohio 43223

Final Report
14. Sponsoring Agency Code

15. Supplementary Notes

None

16. Abstract
This report documents the work conducted as a multi-disciplinary project on the wireless charging of
parked Electrical Vehicles (EVs) by Wright State University and supported by the Ohio Department of
Transportation (ODOT). This document summarizes our progress on a wide variety of topics, including 1)
in-house software to read and label the open-source high-definition maps (HD maps), 2) design of
electrical circuitry required for wireless charging, 3) finite element analysis (FEA) of electromagnetic
system, 4) conceptual designs of the charging pads and stations, and 5) communication protocol.
17. Keywords 18. Distribution Statement

High Definition Map, Vector Map, Wireless Charging,
Electromagnetic, Resonant Induction Charging Circuit,
Communication Protocol

No restrictions. This document is available
to the public through the National
Technical Information Service, Springfield,
Virginia 22161

19. Security Classification (of
this report)

20. Security Classification
(of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 40

Form DOT F 1700.7 (8-72) Reproduction of completed pages authorized

3 | P a g e

Credits and Acknowledgments Page

Prepared in cooperation with the Ohio Department of Transportation
and the U.S. Department of Transportation, Federal Highway Administration

The contents of this report reflect the views of the author(s) who is (are) responsible for the facts and

the accuracy of the data presented herein. The contents do not necessarily reflect the official views or

policies of the Ohio Department of Transportation or the Federal Highway Administration. This report

does not constitute a standard, specification, or regulation.

We would like to express our sincere appreciation to Nick Hegemier, Jennifer Spriggs,

and Aaron Moore from the Ohio Department of Transportation for their invaluable

contributions to this project. Their expertise in high-definition maps and unwavering

support have been instrumental in guiding us at every step of this endeavor.

Their dedication to moderating meetings, providing technical insights, and offering

valuable sources of information has significantly enhanced the quality and scope of our

work. Their commitment to our project has been a constant source of inspiration, and

we are truly grateful for the generosity of their time and knowledge.

4 | P a g e

Contents
Contents ... 4

1. Problem Statement ... 6

2. Research Background ... 6

3. Research Approach ... 6

3.1. High-Definition Maps (HD): ... 6

3.2. Review of Standards and Charging Station Conceptual Design: 7

3.3. Resonant Induction Charging Circuit: ... 7

3.4. Electromagnetic Simulation: ... 7

3.5. Communication: .. 7

4. Research Findings and Conclusions ... 7

4.1. High-Definition Maps (HD): ... 7

4.1.1. Code Description .. 8

4.1.2. Integrating Developed Code for Labeling with Apollo Software 14

4.1.3. Apollo Installation .. 15

4.1.4. Point Cloud Extraction in Apollo .. 16

4.1.5. Road Network.. 17

4.1.6. Vector Map ... 18

4.1.7. Vector Map Tools .. 19

4.1.8. Route Planning .. 19

4.1.9. Map Matching .. 20

4.1.10. Turn-by-Turn Navigation ... 20

4.1.11. A Proposed Flowchart for Labeling and Navigation of/to Charging Stations:
 20

4.2. Review of Standards and Charging Station Conceptual Design: 21

4.2.1. Design Criterion from Standards: ... 21

4.2.2. Conceptual Designs: .. 21

4.2.3. Receiving Pad (Vehicle Attached (VA)) and Transmitter Pad (Ground
Attached (GA)) Designs .. 23

4.2.4. Parking Spot Reservation System: .. 24

4.3. Resonant Induction Charging Circuit .. 25

4.4. Electromagnetic Simulations: .. 29

4.4.1. Simulation Procedure:.. 30

4.4.2. Design, Results, and Discussion: .. 36

5 | P a g e

4.5. Communication Protocol: ... 38

5. Conclusions .. 39

6. Recommendations for Implementation ... 39

Figure 1. KITTI dataset structure ... 8
Figure 2. Schematic of different timeframes in the KITTI dataset. 9
Figure 3. Inliers and outliers .. 14
Figure 4. The Apollo starting menu... 16
Figure 5. Labeled cloud point data ... 17
Figure 6. Point cloud database and corresponding vector map between two points, J1
and J2, adapted from [6]. .. 18
Figure 7. The pipeline of VectorMapNet includes a feature extractor, map element
detector, and polyline generators [7]. ... 19
Figure 8. The flowchart of the proposed approach for labeling charging stations on
existing Apollo datasets and generating the roadmap network for navigation. 21
Figure 9. The proposed CAD models for the initial design of the charging station. .. 23
Figure 10. Grid power to battery process. ... 25
Figure 11. Rectifier taking 120 V AC at 60 Hz and turning it to 100 V DC 26
Figure 12. The Oscillator Circuit takes an input of 100 V DC and can turn it into 65 V
AC at 85 kHz. ... 27
Figure 13. Rectifier turning 65 Volts AC into 350 Volts DC on the receiver side. 28
Figure 14. Output Waveform of the voltage after rectification through the Receiver
Circuit ... 28
Figure 15. Waveform of AC Voltage after oscillation, showing Max and Min Voltages
and RMS Values ... 29
Figure 16. Hertz spark gap and parabolic reflectors for wireless power transfer (WPT)
in 1888. .. 29
Figure 17. Electric shuttle and electric charging station communication
demonstration .. 38

6 | P a g e

1. Problem Statement
The global electric vehicle (EV) market is forecasted to grow by 24.3% till 2028
constantly. However, the development in charging infrastructure is still lagging behind
that, hindering the EV's widespread application, i.e., 30 million chargers are still
needed to support the existing EV demand. Also, based on the survey by Witricity, 86%
of EV owners are highly interested in wireless charging for parked vehicles, making it
the 3rd most wanted feature in EVs. Here, we aim to design an over-the-pavement
"inductive wireless charging ecosystem" for a fleet of autonomous electric vehicles
(AEVs). The project's objectives are 1) design a wireless charging station that allows
charging AEVs in the parking lot to increase efficiency, eliminate the need for individual
charging wires for each EV, turn the passive parking time into a productive time, and
increase the autonomy of charging process, 2) suggest the communication system
between charging stations and AEVs (charger reservation system), the interaction
between charger and AEVs, and safety. This proposed technology is a necessary step
to implement a fleet of fully automated shuttles for the future generation of smart
cities to connect people to the workplace, health centers, and recreational sites
efficiently and with less carbon footprint. It also provides a safe charging technique for
extreme climatic conditions (heavy snow and rain), which pose significant importance
due to the climate of the state of Ohio.

2. Research Background
The main objective is to design an inductive charging station for a fleet of automated
shuttles. In this scenario, an automated shuttle should be able to find an available
wireless charger, reserve the charger, optimally park over the charging station, start
the charging (docking), and undock after charging completion. This document
summarizes our progress on a wide variety of topics, including 1) in-house software to
read and label the open-source high-definition maps (HD maps), 2) design of electrical
circuitry required for wireless charging, 3) finite element analysis (FEA) of
electromagnetic system, 4) conceptual designs of the charging pads and stations, and
5) communication protocol.

3. Research Approach
3.1. High-Definition Maps (HD):

The main objective of this section is to label a charging station on an HD map that
is used for the navigation of the Autonomous Vehicle (AV). After extensive research
on various open-source HD datasets, such as KITTI [1], Sensat Urban [2], nuScenes,
Toronto 3D, and Waymo, we chose the KITTI dataset to implement our labeling
algorithm on the existing open-access HD Maps. The KITTI dataset is a popular
computer vision dataset commonly used for object detection, tracking, and scene
understanding in autonomous driving applications. It provides a comprehensive
collection of sensor data recorded from real-world driving scenarios. It also includes
Camera Data, LIDAR data, Radar Data, Velodyne Data, GPS/IMU Data, Object
Annotation, Calibration Files, and Data Synchronization. These features make the
KITTI dataset valuable for developing and evaluating computer vision algorithms for
autonomous driving applications. Researchers can leverage this data to train and

7 | P a g e

test their models on real-world scenarios, contributing to advancements in the field
of autonomous driving. In addition, we used Open3D [3], an open-source library for
point cloud data processing in Python, which helps the rapid development of
software dealing with 3D data. Finally, the Apollo environment was used with our
code to check our code's functionality and propose a platform.

3.2. Review of Standards and Charging Station Conceptual
Design:

A comprehensive review of standards, such as ISO, IEC, UL, and SAE, was performed
to understand overall recommended design parameters, e.g., dimension, frequency,
and structure.

3.3. Resonant Induction Charging Circuit:

The LTSpice software models the Resonant Induction Charging Circuitry for the
receiver and transmitter.

3.4. Electromagnetic Simulation:

 Among various simulation software, such as MATLAB/SIMULINK, EM work, SPICE,
and ANSYS MAXWELL/SIMPLORER. We chose ANSYS as the most suitable simulator
for this project due to its extensive application in academia and industry for
evaluating the design and performance of coils. ANSYS Maxwell can solve physics,
including frequency-domain and time-varying magnetic and electric fields.

3.5. Communication:

ISO 15118 was selected as the best communication protocol.

4. Research Findings and Conclusions
4.1. High-Definition Maps (HD):

Here, we have developed an efficient algorithm that enables the labeling and
classifying of points based on arbitrary latitude and longitude coordinates. By taking
the desired location's latitude and longitude as input, our algorithm accurately
determines and highlights (labels) the precise location. This objective is achieved
through a conversion process that transforms the latitude and longitude values into
cartesian coordinates (x, y, and z), allowing for calculating relative distances in meters.
The Google Colab was used for coding, an online platform provided by Google that
allows users to run and execute Python code entirely on the cloud. Google's
infrastructure provides all the computational resources, including CPU, GPU, and RAM.
It also provides a Jupyter Notebook interface, allowing users to create and edit

8 | P a g e

notebooks containing executable code, rich text, images, and visualizations. Notebooks
are organized into cells, making running code interactively and document work easy.
In the next step, we modified our code to be compatible with the Apollo file format by
reverse engineering Apollo maps and exploring methods of extracting/labeling point
clouds in Apollo. Finally, different approaches were suggested to create an Apollo-
compatible dataset based on the marked location of a wireless charging station to
simulate navigation/driving in the Apollo environment.

4.1.1. Code Description

To work with 3D data, we installed the Open3D Python library using the pip install
command. This library provides the tools and functionality to handle and manipulate
3D data effectively.

!pip install open3d

The command below downloads and extracts the KITTI dataset's data, such as point
clouds, metadata, images, and other information related to cameras and calibrations.

!wget https://s3.eu-central-1.amazonaws.com/avg-kitti/raw_data_downloader.zip
!unzip raw_data_downloader.zip
!chmod +x raw_data_downloader.sh
!./raw_data_downloader.sh

The data structure of downloaded files is shown in the Fig. 1.

Figure 1. KITTI dataset structure

https://s3.eu-central-1.amazonaws.com/avg-kitti/raw_data_downloader.zip

9 | P a g e

The point cloud data are in the "velodyne_points" folder, saved in different timeframes.
Furthermore, essential metadata information, including GPS/IMU data, camera data,
and other supplementary information, is stored within the "oxts" folder (Figure 1).
Our algorithm operates by iterating through the timeframes within the KITTI dataset
folders. It searches for the point cloud file that has the closest distance to the user-
provided input in latitude and longitude format. This process allows us to identify and
retrieve the most relevant point cloud data corresponding to the specified location.

Figure 2. Schematic of different timeframes in the KITTI dataset.

The code snippet below retrieves the user target coordinates in latitude and longitude
format and stores them in the "target" variable.

target_lat = 49.012605023656
target_lng = 8.41632208753425

Then, the necessary libraries are imported using the following commands. We have
included the pyplot library to facilitate rendering the results in Colab.

import os
import open3d as o3d
import open3d.visualization.rendering as rendering
from matplotlib import pyplot

Then, we defined a function called "read_metadata" to extract the metadata
information from each timeframe stored in the KITTI dataset. This function allows us
to retrieve details related to each timeframe, such as latitude and longitude.

def read_metadata(url):
print(f'url: {url}')
with open(url, 'r') as f:

10 | P a g e

cam_info = f.readline().split(' ')
lat, lng, alt = [float(item) for item in cam_info[:6]]
return lat, lng, alt

Next, we have defined the "calculate_distance" function to compute the distance
between two geographical coordinates. This function operates by converting the
latitude and longitude points from degrees to radians. Subsequently, it utilizes the
Earth's radius to calculate the distance, employing the Haversine distance and Angular
distance formulas. The output of this function is returned in kilometers.
from math import sin, cos, atan2, sqrt
def calculate_distance(input_lat, input_lng, camera_lat, camera_lng):
calculation of distances and coordinates on the Earth's surface
pi = 3.14159265359

Convert the latitude and longitude coordinates of points from
degrees to radians
lat_src = camera_lat * pi / 180
lng_src = camera_lng * pi / 180

lat_dst = input_lat * pi /180
lng_dst = input_lng * pi /180

delta_lat = lat_dst - lat_src
delta_lng = lng_dst - lng_src
Calculate the Haversine distance
a = (sin(delta_lat/2)**2) + cos(lat_src) * cos(lat_dst) *
(sin(delta_lng/2)**2)
print(f'a={a}')

Calculate the angular distance in radians
c = 2 * atan2(sqrt(a), sqrt(1-a))
print(f'c={c}')

Calculate the distance using the Earth's radius
R: Radius of the Earth
R = 6371.07103
distance = R * c

return distance

The code snippet below runs through each folder in the KITTI dataset, utilizing the
functions we defined earlier to identify the point cloud file with the minimum distance
to the input geographical coordinates.

import os
import pandas as pd
import warnings
warnings.filterwarnings("ignore")

path = '/content/kitti'

11 | P a g e

show_output = False
list_of_files = {}
df = pd.DataFrame()

for (root, dirnames, filenames) in os.walk(path):
cur_depth = root.count(os.path.sep)

if cur_depth == 3:
for dirname in dirnames:
print(dirname)
timeframes = sorted(os.listdir(os.path.join(root, dirname,
'oxts/data')))
for timeframe in timeframes:
if show_output:
print(f'timeframe: {timeframe} \t '+ os.path.join(root,
dirname, 'oxts/data', timeframe))

lat, lng, alt =
read_metadata(os.path.join(root, dirname, 'oxts/data',
timeframe))
if show_output:
print(f'lat: {lat} lng: {lng} alt: {alt}', lat, lng, alt)

d = calculate_distance(target_lat, target_lng, lat, lng)
print(f'distance: {d}')
data = {
"distance": d,
"file": os.path.join(root, dirname, 'oxts/data', timeframe)
}
df = df.append([{'distance': d, 'file': os.path.join(root,
dirname, 'oxts/data', timeframe), 'path': os.path.join(root,
dirname), 'frame': timeframe[:-4]}])

Then, the results are stored in the following variables for subsequent usage. The
variable "distance_to_point" represents the distance to the target point in meters.
Similarly, "target_file" corresponds to the point cloud file we identified with the closest
distance to our desired location. However, we still need to calculate the relative
distance to determine the precise location of the point we intend to classify.

target_file = df.iloc[0]['file']
target_path = df.iloc[0]['path']
target_frame = df.iloc[0]['frame']
distance_to_point = df.iloc[0]['distance'] * 1000
target_file

We needed to define a function that converts spherical coordinates to Cartesian
coordinates to calculate the relative distance. The function below inputs latitude and
longitude and converts them to the x, y point format.

12 | P a g e

def convert_spherical_to_cartesian(latitude, longitude):
pi = 3.14159265359
#Convert from Degrees to Radians
latRad = latitude * (pi)/180
lonRad = longitude * (pi)/180
R = 6371.07103
earthRadius = R
posX = earthRadius * cos(latRad) * cos(lonRad)
posY = earthRadius * cos(latRad) * sin(lonRad)
return posX, posY

Then, by calling this function, we can obtain the x-y coordinates of the camera and
target points. These coordinates allow us to calculate the relative distance to the target
point.

camera_x, camera_y = convert_spherical_to_cartesian(current_camera_lat, current_camera_lng)
target_x, target_y = convert_spherical_to_cartesian(target_lat, target_lng)

relative_target_x = camera_x - target_x
relative_target_y = camera_y - target_y

convert to meter
relative_target_x = relative_target_x * 1000
relative_target_y = relative_target_y * 1000

Finally, once we have determined the relative_target_x and relative_target_y
coordinates, we can utilize the methods provided by the Open3D library to crop and
segment the points. This function will allow us to extract the points within a 15-meter
radius of the target point.

pcd = o3d.io.read_point_cloud(target_pointcloud_file)

CUBOID_EXTENT_METERS = 30
METERS_BELOW_START = 1
METERS_ABOVE_START = 20

def get_cuboid_points(start_position):
return np.array([
[start_position['x'] + (CUBOID_EXTENT_METERS / 2),
start_position['y'] + (CUBOID_EXTENT_METERS / 2),
start_position['z'] + METERS_ABOVE_START],
[start_position['x'] - (CUBOID_EXTENT_METERS / 2),
start_position['y'] + (CUBOID_EXTENT_METERS / 2),
start_position['z'] + METERS_ABOVE_START],
[start_position['x'] - (CUBOID_EXTENT_METERS / 2),
start_position['y'] - (CUBOID_EXTENT_METERS / 2),
start_position['z'] + METERS_ABOVE_START],
[start_position['x'] + (CUBOID_EXTENT_METERS / 2),
start_position['y'] - (CUBOID_EXTENT_METERS / 2),
start_position['z'] + METERS_ABOVE_START],

13 | P a g e

Vertices Polygon 2
[start_position['x'] + (CUBOID_EXTENT_METERS / 2),
start_position['y'] + (CUBOID_EXTENT_METERS / 2),
start_position['z'] - METERS_BELOW_START],
[start_position['x'] - (CUBOID_EXTENT_METERS / 2),
start_position['y'] + (CUBOID_EXTENT_METERS / 2),
start_position['z'] - METERS_BELOW_START],
[start_position['x'] - (CUBOID_EXTENT_METERS / 2),
start_position['y'] - (CUBOID_EXTENT_METERS / 2),
start_position['z'] - METERS_BELOW_START],
[start_position['x'] + (CUBOID_EXTENT_METERS / 2),
start_position['y'] - (CUBOID_EXTENT_METERS / 2),
start_position['z'] - METERS_BELOW_START],
]).astype("float64")
points = np.array(mesh_sphere.vertices).reshape([-1, 3])

point_cloud = o3d.geometry.PointCloud()
point_cloud.points = o3d.utility.Vector3dVector(points)

start_position = {'x': relative_target_x, 'y': relative_target_y, 'z': -1.9}
cuboid_points = getCuboidPoints(start_position)

points = o3d.utility.Vector3dVector(cuboid_points)
oriented_bounding_box = o3d.geometry.OrientedBoundingBox.create_from_points(points)
point_cloud_crop = point_cloud.crop(oriented_bounding_box)

inliers_indices = oriented_bounding_box.get_point_indices_within_bounding_box(pcd.points)

inliers_pcd = pcd.select_by_index(inliers_indices, invert=False)
outliers_pcd = pcd.select_by_index(inliers_indices, invert=True)

The code snippet below visualizes the inlier and outlier data points. In this
implementation, the inliers represent the points we have cropped and are about to be
classified.

bounding_box = inliers_pcd.get_axis_aligned_bounding_box()
bounding_box.color = (1, 0, 0)
o3d.visualization.draw_geometries([pcd, inliers_pcd, bounding_box])

The labeled results are shown in Figure 3.

14 | P a g e

Figure 3. Inliers and outliers

In this step, we assign labels to the points divided into inliers and outliers.
Subsequently, we concatenate these labeled points.

inliers (marked location)
labels_column =
np.ones(np.asarray(inliers_pcd.points).shape[0]).reshape(np.asarray(inliers_pcd.points).shape[0],
1)

inliers_numpy = np.asarray(inliers_pcd.points)
all_classified_data = np.append(inliers_numpy, labels_column, 1)

outliers
labels_column =
np.zeros(np.asarray(outliers_pcd.points).shape[0]).reshape(np.asarray(outliers_pcd.points).shape[
0], 1)
outliers_numpy = np.asarray(outliers_pcd.points)
all_unclassified_data = np.append(outliers_numpy, labels_column, 1)

all_data = np.concatenate((all_classified_data, all_unclassified_data), axis=0)

As a result, we can save the concatenated points, including the labeled points, to a
single PCD file named "pointcloud.pcd" compatible with various commercial and open-
source software like Cloud Compare.

xyzi = all_data
xyz = xyzi[:,0:3]
i = [[i] for i in xyzi[:,3]]

pcd_out = o3d.t.geometry.PointCloud()
pcd_out.point["positions"] = o3d.core.Tensor(xyz)
pcd_out.point["classification"] = o3d.core.Tensor(i)

o3d.t.io.write_point_cloud("pointcloud.pcd", pcd_out)

4.1.2. Integrating Developed Code for Labeling with Apollo Software

15 | P a g e

Apollo Auto, developed by Baidu, Inc., is a cutting-edge and comprehensive platform
for autonomous driving and intelligent transportation solutions. This innovative
technology suite is at the forefront of the global autonomous vehicle industry, offering
a wide range of software and hardware solutions designed to enable safe, efficient, and
autonomous mobility.
Apollo Auto represents Baidu's ambitious vision to transform how we move and interact
with transportation. As one of the world's leading technology companies, Baidu has
leveraged its artificial intelligence (AI), machine learning, and data analytics expertise
to create a robust ecosystem that powers self-driving vehicles and intelligent
transportation systems.
This platform has gained significant attention and acclaim in the automotive and tech
industries for its open-source approach, fostering collaboration among stakeholders,
including automakers, hardware manufacturers, software developers, and researchers.
Apollo Auto's open platform provides the tools and resources necessary to accelerate
the development and deployment of autonomous vehicles, making it a pivotal player in
shaping the future of mobility.
In this section, we changed our labeling code to be compatible with Apollo's file format
by reverse engineering an existing Apollo map and exploring methods of extracting point
clouds.

4.1.3. Apollo Installation

Before installing Apollo [4], some prerequisites, such as Ubuntu Linux, NVIDIA GPU
Driver, Docker Engine, and NVIDIA Container Toolkit, must be installed.
After installing prerequisites, one needs to run the command below to clone the
repository
Using SSH
git clone git@github.com:ApolloAuto/apollo.git

Using HTTPS
git clone https://github.com/ApolloAuto/apollo.git

The command below will define APOLLO_ROOT_DIR environment variable to the root
directory.
echo "export APOLLO_ROOT_DIR=$(pwd)" >> ~/.bashrc && source ~/.bashrc

The next step is starting the Apollo development docker container by entering the
command below in the Linux terminal (root directory).
bash docker/scripts/dev_start.sh

After starting the Apollo development container, the command below should be run to
login into the newly started container.
bash docker/scripts/dev_into.sh

In this step, Apollo needs to be built by running this command inside the Apollo docker
container.

16 | P a g e

./apollo.sh build

After a successful build by running this command, the Apollo Dreamview backend will
be started.
./scripts/bootstrap.sh [start | stop | restart]

Then, by opening http://localhost:8888 in the browser, the Apollo starting menu should
pop up, as shown in Figure 4.

Figure 4. The Apollo starting menu

4.1.4. Point Cloud Extraction in Apollo

Point cloud extraction in Apollo involves several steps, which will be discussed below.
1- First, the sensor data needed to be collected through the command below.

cyber_recorder record -c imu_topic localization_pose_topic lidar_topic

2- Next, decompress the record file in Apollo to get the pcd results:

./bazel-
bin/modules/localization/msf/local_tool/data_extraction/cyber_record_parser --
bag_file=data/bag/demo_sensor_data_for_vision.record --out_folder=data --
cloud_topic=/apollo/sensor/velodyne64/compensator/PointCloud2

We used "cyber record parser" to parse and save information about fusion, GNSS, lidar,
odometry location, point clouds, etc., to generate output pcd files. This tool will
generate pcd outputs in timeframes. Therefore, to get the final point cloud map,
first, we need to run pose interpolator command as below.

http://localhost:8888/

17 | P a g e

./bazel-bin/modules/localization/msf/local_tool/map_creation/poses_interpolator --
input_poses_path=data/pcd/odometry_loc.txt --
ref_timestamps_path=data/pcd/pcd_timestamp.txt --
extrinsic_path=modules/localization/msf/params/velodyne_params/velodyne64_nova
tel_extrinsics_example.yaml --output_poses_path=data/pcd/poses.txt

3- Then we interpolated the position according to the external parameters and
time-stamp of the lidar. The corrected positions will be saved in –
output_poses_path.

Figure 5. Labeled cloud point data

4- Finally, we can see the output result of the classified Apollo map after running

our map marker algorithm (Figure 5). Additionally, the ndt_mapping technique,
a localization technique based on the normal distributions transform algorithm,
can make preloaded maps. NDT aligns a real-time LiDAR point cloud with a high-
definition map represented as a 3D point cloud. This method suits environments
where LiDAR data is reliable and readily available.

4.1.5. Road Network

An HD map can generally be separated into point-cloud and vector maps. A vector
map, also known as a road network map, represents the geo-referenced position of
the objects of interest in a driving environment (lanes, traffic signs, lights, etc.) with
points, lines, and polygons and is used for strategic planning (navigation).
Implementing HD map navigation and path-finding involves several major steps:
Acquiring HD Map Data, Map Data Processing and labeling, localization, Route
Planning, Map Matching, Turn-by-Turn Navigation, and Real-Time Updates. A brief
description of each step is covered in the following section.

18 | P a g e

4.1.6. Vector Map

In order to generate the vector map, usually machine learning methods are used to
extract road network semantic information (e.g., road types, lane information, speed
limits, traffic signals and stop signs, turn restrictions, pedestrian crosswalks, bicycle
lanes and paths, public transportation stops, land marks and points of interest, traffic
flow and congestion, accident and incident report, road surface condition, elevation,
and terrain information). Fig. 6 shows the point cloud map and associated vector map
with road network semantic information [6] to illustrate the concept.

Figure 6. Point cloud database and corresponding vector map between two points,

J1 and J2, adapted from [6].

 However, creating a vector map is a manual digitization process and takes time, so
researchers are trying to find methods to automate this task using Graph Neural
Networks for Vector Map Automation.
VectorMapNet [7] proposes a neural network architecture that directly generates
vectorized HD maps from raw sensor data and eliminates the need for manual map
creation and post-processing steps. The "end-to-end" nature suggests that the entire
process, from input sensor data to the output vectorized HD map, is integrated into a
single learning framework. More importantly, the "class labels" can be
automatically assigned with this program, e.g., charging stations. Fig.7 shows the
architecture of this end-to-end algorithm.

19 | P a g e

Figure 7. The pipeline of VectorMapNet includes a feature extractor, map
element detector, and polyline generators [7].

4.1.7. Vector Map Tools

We review other vector map generation tools here as viable options. The Vector Map
Tools usually input Point Cloud Data (pcd) and generate vector maps with road and
lane information as output. Some vector map creation tools that can be used to
generate vector maps are listed below:

• MapToolbox (Autoware AI): This unity plugin gets pcd files as input and help
users generate output vector map.

• Vector Mapper [8]: This is a free online tool; it requires a Point Cloud Data
file, and lanes must be drawn manually point by point, which could be time-
consuming.

• Simple Vector Mapper Tool (SVMT)[9]: It is the recommended software to
generate vector maps for Autoware. Autoware is a driving platform developed
on ROS (Robot Operating System). SVMT is a program that helps to create
vector maps, especially for path planning in Autoware software.

4.1.8. Route Planning

The next step after generating the vector map is route planning, which relies on
vector maps to determine the optimal path from a starting point to a destination.
Route planning involves several steps.

• Define the graph: The vector map serves as the basis for creating a graph
representation of the road network. Nodes represent key points (e.g.,
intersections), and edges represent road segments between them.

20 | P a g e

• Define cost metrics: Cost metrics are used to evaluate different routes based
on factors like distance, traffic, and road conditions. These metrics help in
selecting the most suitable path.

• Apply path-finding algorithms: Path-finding algorithms, such as Dijkstra's
algorithm or A* search, are applied to the graph to determine the optimal
route from the current position to the destination.

4.1.9. Map Matching

Map Matching is the process of aligning sensor data from the Vehicle with the vector
map to determine the Vehicle's precise position on the road. This process involves
multiple steps:

• Sensor data collection: Data from sensors, such as GPS, IMU, and odometry,
is collected to track the Vehicle's movement.

• Preprocess sensor data: Raw sensor data is processed and filtered to remove
noise and inaccuracies.

• Map matching algorithm: A map matching algorithm compares the sensor
data to the vector map and estimates the Vehicle's position on the road.

• Position estimation: The algorithm accurately estimates the Vehicle's
position, which is crucial for navigation and control.

4.1.10. Turn-by-Turn Navigation

Turn-by-turn navigation takes the information from the route planning and map-
matching processes to guide the driver or autonomous Vehicle through the selected
path. It involves:

• Maneuver detection: Identifying upcoming maneuvers, such as turns,
merges, or exits, based on the selected route and the Vehicle's current
position

• Maneuver instructions: Providing clear and timely instructions to the driver
or autonomous system on executing each maneuver.

4.1.11. A Proposed Flowchart for Labeling and Navigation of/to

Charging Stations:

 We propose the following flowchart (Fig. 8) for labeling an existing location as a
charging station on Apollo HD maps and modeling autonomous vehicle navigation.
The point clouds will be extracted from bin files using an existing Python extension
code (bin.to.pcd). The generated PCD file can be read with our labeling Python code
to mark the location of the charging station. In the next step, the marked point cloud
file is imported into the "VectorMapNet" software to extract road semantic
information, including the road map network.
In the final step, these files will be combined to generate a bin file that includes all
labels and road information. This file can be opened within the Apollo environment

21 | P a g e

(Apollo Dream View) to simulate the navigation based on our created map. Therefore,
we are generating HD maps compatible with Apollo, which has modules for navigation
and path-finding algorithms. To change the default map and send commands to Apollo
Dream View, we can also utilize the LGSVL Simulator API in Python.

Figure 8. The flowchart of the proposed approach for labeling charging stations on
existing Apollo datasets and generating the roadmap network for navigation.

4.2. Review of Standards and Charging Station Conceptual Design:

4.2.1. Design Criterion from Standards:

After reviewing the standards SAE J2954, SAE J2845/6202009, IEC TS61980-2, IEC 61980-
3, ISO 19363, UL 9741, SAE J2836/6_201305, and SAE J1773, we have gathered
information about the design criteria for the charging station, e.g., frequency,
structure, and dimensions of transmitter/receiver pads. The SAE standard J2954-2
provides the overall dimensions of the pads for heavy-duty (HD) and Fully electrified
HD Vehicles based on the available floor pan. The focus was on electrified HD Vehicles
because of a particular interest in electrified autonomous minibus. Due to copyright
issues, the recommended dimensions and structure of transmitter/receiver pads from
SAE J2954 can not be added to the public report.

4.2.2. Conceptual Designs:

Four conceptual designs are proposed for various transmitter/receiver configurations,
and their advantages and disadvantages are summarized in Table 1. The first design
(highlighted in green) was selected as the final design because of its straightforward
method of maintaining a constant gap between the transmitter and receiver, leading
to higher magnetic coupling among coils. However, this design can also customize the
number of transmitting and reviving pads. Other methods, such as adding pads to the
front or side of the vehicle, raise concerns about maintaining a constant distance
between the transmitter and the receiver.

22 | P a g e

Table 1. Decision Matrix for placement of Transmitter and Receivers.

Pros Cons Design

• A fixed receiver-to-
transmitter
distance

• High efficiency
• A lower loss of the

electromagnetic
field

• Allows for multiple
receivers for a
single transmitter.

• Doesn't need to be
parked accurately.

• Affected by the
weather

• Potential damage
due to snow
plowing, etc.

• Unaffected by the

weather
• A fixed distance

between the
transmitter and the
receivers.

• Allows for multiple
receivers for a
single transmitter.

• Doesn't need to be
parked accurately.

• Expensive to create
and produce/May
not have the room
at the location

• Requires extra
wiring or
electronics to run
the power from the
top of the bus to
the bottom.

• Needs additional
shelter

• Harder for the
weather to affect
the design

• Can have multiple
receivers to a single
transmitter

• Could charge more
than one bus at a
time/Use up less
space

• Distance is not
fixed, so some
receivers may lack
power transfer

• Harder to align the
bus with chargers
unless going in a
straight line.

23 | P a g e

• Harder for the
weather to affect
the design

• Can have a variable
distance between
the receiver and
transmitter

• Compact and simple
design.

• The size constraint
of the receiver/May
only allow for a
single receiver

• It would require
backing out/ pulling
out depending on
how the bus was
parked.

• Variable distance, If
not parked close
enough, can lose
efficiency.

Finally, Figure 11 illustrates the CAD models of the initial design. A long elliptical
charging pad along a wall-mounted or pole-mounted control box will be used. Three
receiver coils will be installed on the Vehicle. This design is based on the
electromagnetic simulation presented in Section 4.

Figure 9. The proposed CAD models for the initial design of the charging station.

4.2.3. Receiving Pad (Vehicle Attached (VA)) and Transmitter Pad
(Ground Attached (GA)) Designs

In this section, we focus on the dimensions and structure of the receiver and
transmitter pads based on SAE standards. The receiving pad, also known as the
Vehicle Attached pad (VA), is mounted underneath the Vehicle. It uses the coils to

24 | P a g e

receive the induction waves and convert them into power for the batteries. The SAE
J2954 provides the dimensions and structure of the VA, although we cannot report it
here due to copyright issues.

4.2.4. Parking Spot Reservation System:

We explored various existing technologies for parking spot reservations. Table 2 shows
the pros/cons for potential technologies to be integrated into our system for parking
reservations. After concluding the pros and cons of each option, the G5 wireless was
the best solution for reserving parking spaces (highlighted in green). The G5 combines
the advantages of the induction loop and the Lidar sensors. Using two detection
types, we can differentiate the vehicles from other objects. The data they collect can
be used to reserve a spot in planning software. These devices use LTE
communications, meaning they are extremely easy to integrate with other systems.

Table 2. Decision Matrix for Parking Spot Reservation System
Description Pros Cons Design
Weight
Scale

• Can be scaled to
vehicle size

• Easy set up

• Must be
above
ground

• Will not be
able to
pick up
smaller
objects

Induction
Loop

• Wires can be
customized to size
of parking spot

• In ground and
weather resistant

• Technology is used
at some stoplights

• Will have
interferenc
e from
charger

• Parking lot
will need
cut into to
place wires

Lidar
Sensor

• Can pick up any
object

• Can use a central
computer to control
many units

• Not effected by
weather conditions

• Small footprint

• Must be
above
ground

G5 Wireless • Uses micro radar
and magnetic field
sensing.

• Small footprint
• Long battery life

• Must be
above
ground

25 | P a g e

• Takes advantage of
LTE, a
communication
standard we can use

4.3. Resonant Induction Charging Circuit

Circuit designs were started by researching scientific publications and standard
documents over wireless vehicle charging and simulation testing using the LTSpice
software. The resonant induction charging system is selected as the charging circuit.
Figure 10 shows the components needed to implement inductive charging systems.

Figure 10. Grid power to battery process.

The resonant induction charging enables a more efficient transfer of electricity through
the air without human interaction. Here, we design a circuitry for transmitter and
receiver pads. The input is a 120V AC with a frequency of 60 Hz, rectified into a DC
voltage with a simulated rectifier design. The input current goes into the oscillator,
producing an average of 65 volts AC with 85 kHz. It is known that the higher the
frequency, the more efficient the transfer of electricity. However, we chose the
frequency of 85 kHz based on the SAE-J2954 standard. This concept has been confirmed
through research papers and our simulations with the LTSpice software. According to
the SAE J2954, we can obtain the highest frequency allowed, 85 kHz, with a deviation
of 50 Hz. After electricity is transferred, AC voltage will be converted back into DC

26 | P a g e

voltage, which will then get boosted to the desired voltage of 350 V DC, which can then
be stored in the EV's battery, Fig. 10.
The current design of the rectifier is obtained by using a transformer with a 1:10 ratio
to step up the voltage before it goes through diodes, which convert the AC voltage to
DC voltage capable of producing over 100 Volts of DC, Fig. 11. Other rectifiers designs
include various types of diodes to achieve the same effect but lack a clean, constant
flat DC waveform. The use of the transformer allows for the DC voltage to not vary in
frequency and allows for a more predictable output.

Figure 11. Rectifier taking 120 V AC at 60 Hz and turning it to 100 V DC

The oscillator is based on a crystal oscillator. It is constructed with two parallel
MOSFETs, forming a loop with an 18 MΩ resistor and a feedback loop consisting of
multiple inductors and capacitors, which allows the system to create a high-frequency
waveform. The feedback loop creates the oscillations in the voltage while the MOSFET
acts as a timer, turning on and off the system at a very high speed. This system allows
an input of 100 volts DC and can create an average of 65 volts AC at 85 kHz, Fig. 12.

27 | P a g e

Figure 12. The Oscillator Circuit takes an input of 100 V DC and can turn it into 65 V
AC at 85 kHz.

The AC voltage on the receiver side should be converted to DC, which is done with a
similar rectifier circuit that can produce a clean and constant DC voltage at almost any
value. The rectifier can take 65 volts AC at 85 kHz and produce, on average, 120 volts
DC through another transformer. The voltage is then stepped up to our desired 350 volts
DC, which is needed to charge the electric vehicle, Fig. 13.

28 | P a g e

Figure 13. Rectifier turning 65 Volts AC into 350 Volts DC on the receiver side.

Figs. 14-15 show the capability of the proposed circuit to generate the 350 V DC on the
receiver part for charging the battery and the generated AC voltage on the transmitter
circuitry.

Figure 14. Output Waveform of the voltage after rectification through the Receiver

Circuit

29 | P a g e

Figure 15. Waveform of AC Voltage after oscillation, showing Max and Min Voltages

and RMS Values

4.4. Electromagnetic Simulations:

Heinrich Hertz was the first to implement wireless power transfer (WPT) in 1888. He
used a spark gap and parabolic reflectors to demonstrate a high-frequency power
transfer between the transmitter and the receiver. Figure 16 shows the Hertz spark
gap and parabolic reflectors that Heinrich Hertz used in experiments of 1888.

Figure 16. Hertz spark gap and parabolic reflectors for wireless power transfer

(WPT) in 1888.

30 | P a g e

Wireless power transfer (WPT) has been used for decades in applications like

satellite communications, telemetry, and radio frequency identification (RFID) tags.
Those applications transfer meager power, microwatts to milliwatts. To transfer a high
amount of energy, kilowatts, we need to use inductive coupling, which was invented
by Nikola Tesla.

Wireless power transfer (WPT) allows energy transmission through an air gap
without interconnecting cables. Therefore, the heart of the Wireless power transfer
(WPT) system is the Transmitting and receiving coils. Before implementing any coil
design physically, a simulation through a suitable simulator must be done. There are a
lot of simulators, such as MATLAB/SIMULINK, EM work, SPICE, and ANSYS
MAXWELL/SIMPLORER. We have determined through researching online reports and
documents that the most suitable simulator for this project is ANSYS. Researchers and
industries have widely used this software for evaluating the design and performance of
coils.
In Wireless power transfer (WPT), the design of the coils is essential because it controls
how much power is transmitted and received as well as the efficiency. In our
implementation, we use ANSYS Maxwell, an EM field solver for wireless charging,
transformers, and other electric-mechanical devices. ANSYS Maxwell can solve physics,
including frequency-domain and time-varying magnetic and electric fields.

4.4.1. Simulation Procedure:

1) Design Tx and Rx coils: After running the ANSYS Electronics Desktop software,
the simulation type should be selected in the Project manager area (Project2)

a) Right-click on the project, then Insert, and from Insert, select Insert
Maxwell 3D design.

b) Right-click on Maxwell3Desing1 ==> select Solution Type.. ==> Eddy

Current ==> OK.

31 | P a g e

c) Now, to insert the coil, click on Draw ==> Used defined Primitive ==>

SegmentedHelix ==> PolygonHelix

d) The simulation parameters should be imported below.

2) Coil Setting and Properties:

32 | P a g e

a) Under Vacuum, double-click on PolygonHelix1, then the coil
specification window will pop up. The name, Material, and color of the
component could be edited from the window below:

b) The next step is drawing two lines along the Y-axis and X-axis. The two

lines had three points: Point 1, Point 2, and 3, as shown below.

c) The next step is combining the coil and the two lines, Lines 1 and 2.

That could be done by following the steps below: Hold Ctrl, then select
the coil, PolygonHelix1, then Line 1 and Line 2, CreatePolyLine

3) Duplicating Transmission Coil into Three Receiver Coils: Steps 1 and 2 covers

creating a Tx coil; the same steps could be followed to create Rx coils. The
other way is to copy and paste the design, as shown below.

33 | P a g e

4) Creating Gap between Tx and Rx: The gap is a critical parameter that can

impact the performance of the Tx and Rx coils. In order to set the gap, select
the Rx coils and click move. Then, double click moves inside Rx coil and set x-
value and y-value = 0 mm and z-value = a variable value as 'Gap.' The idea
behind setting Z to Gap is to allow the design to test different gap distances
(parametric sweeping over Gap distance).

5) Creating A Region: To simulate the coil, we need to create a Box of Air Region

as below.

6) Steps for simulation settings:

a) 3D Components: We do not change this parameter because everything is
designed under the predefined setting of Maxwell3D.

34 | P a g e

b) Model: All the components will be listed here.
c) Boundaries: We do not change this parameter because of default

settings.
d) Excitation: The current excitation in the Tx Coil will flow from Tx to Rx,

leading the Rx Coil to be excited when it is in the Tx Coil magnetic field
range.

e) Parameters: we will set simulation parameters as below:
Right-click on Parameter ==> Assign ==> Matrix, then select Rxin and Txin as shown

f) Mesh: Two meshes will be assigned, one for region and one for coils.

For Coil: right-click on Mesh ==> Initial Mesh Setting, then Mesh Method
==> Auto, Curved Surface Meshing ==> Use Slider and Mesh Size ==>
Coarse(Small).
 For region: right-click on Mesh ==>Assign Mesh Operation ==>Inside
Selection ==>Length Based.

35 | P a g e

g) Analysis: Below is how to set up the analysis parameter.

h) In order to run the simulation, Right click on Setup, then click Analyze

36 | P a g e

4.4.2. Design, Results, and Discussion:

We performed electromagnetic simulations for three transmitter/receiver system
designs to predict the magnetic coupling and select the best design with the largest
efficiency. The Idea of having three coils for the receiver is to reduce the losses of the
electromagnetic flux, leading to improved performance. One of the main problems we
face in designing the Wireless power transfer (WPT) is the alignment between the Tx
and Rx coils. The more offset we have, the less efficiency we get. In order to solve this
problem, our implementation is based on using the three coils as Rx and one long coil
as Tx. The Length of the Tx coil could match the Length of the Vehicle. The precise
alignment would not be an issue because the Rx coils will receive the maximum possible
power from the Tx coil.
The wire used in the coil is 5 mm thick, and the coil size was designed to match the
space available for use on the Vehicle. Finally, the gap space between the Tx and Rx
was chosen based on the recommendation by SAE standards. Table 3 summarizes our
design parameters.

Table 3. Design parameters for electromagnetic simulation.

The current that flows in one coil generates a magnetic flux. A portion of the magnetic
flux of the transmitter coil connects with the receiver coil, which induces current in
the receiver coil. The induced current is proportional to the magnetic coupling

37 | P a g e

coefficient between the two coils, which varies between 0 and 1. When the coupling
coefficient is 1, the magnetic flux generated by one coil is linked ideally with the other.
When the coupling coefficient is 0, the magnetic flux generated by one coil is not linked
with the other coil, and in that case, the coils are known as magnetically isolated.
Therefore, the magnetic coupling coefficient was chosen to represent power
transmission efficiency, i.e., a higher magnetic coupling coefficient indicates higher
efficiency. All simulations are summarized in Table 4.
Table 4. The magnetic coefficient for all
Design 1:
We used a large Tx coil to cover all three Rx
coils in this design. The disadvantage of this
design is that the large area of the Tx coil is
not being used, which leads to low
performance. The coupling coefficient of this
design is %0.20

Design 2:
This design used a standard Tx coil to cover
the middle Rx coil. The disadvantage of this
design is that we have two Rx coils not covered
by the Tx coil, leading to low performance.
The coupling coefficient of this design is %0.22.

Design 3: Best Design with High Coupling Coefficient
We used a long Tx coil to cover all three Rx
coils in this design. This design gave the best
performance of all the three designs we
implemented because the Tx coil covers the Rx
coils, and we do not have any unused area of
the Tx and Rx coils. The coupling coefficient of
this design is %0.38

38 | P a g e

4.5. Communication Protocol:

The digital communication between the electric vehicle and the charging station should
follow communication protocol ISO 15118 to prepare the best charging schedule for the
EV. One of the features of the communication protocol ISO 15118 is the high level of
security, including encryption. Moreover, the protocol ISO 15118 uses IPv6-based
communications, the fastest protocol; many companies and vendors, such as Mercedes
Benz, have used ISO 15118 in their EVs. EV charging stations can communicate with a
central control station through clouds, providing additional security. Information such
as status (idle or busy), scheduling for incoming EV, and predicted availability can be
transmitted through wired networks or wireless communications such as 5G to the
central control. Each EV also communicates with the central control through 5G
wireless networks to report its location and charge level. The central control
determines the best route to direct autonomous EVs to the nearest open charging
station.
When the EV shuttle arrives at the station, the communication between the EV and the
charging station could be through secured wireless to allow the EV to enter and exit
the charging station safely and update necessary information such as EV battery level,
charging time, and destination.

Figure 17. Electric shuttle and electric charging station communication

demonstration

39 | P a g e

5. Conclusions
HD maps: A Python code was developed for marking/labeling a user-input location on
an HD map. Also, a flowchart was proposed to make vector maps for navigation in the
Apollo environment. In the next step, one can implement the proposed steps with
open-source software such as Apollo and Vector Map Net to label the charging station
and simulate navigation toward the station.
Electromagnetic Simulation: ANSYS was used to model the magnetic coupling of
several designs. The magnetic coupling coefficient was used to represent the power
transfer efficiency. The step-by-step tutorial can guide the modeling of any wireless
charging design.

Charging Circuitry: The transmitter and receiver circuit was proposed and simulated
with LTSpices. The proposed circuitry generates 350 V DC on the receiver sides, which
can be used to charge EV batteries. Future plans for the circuit could be updating the
overall feedback loop of the circuit to use smaller capacitors; currently, the capacitors
used in simulation with the rest of the circuit would be hard to purchase, so with the
use of some clever circuity like putting more capacitors in parallel one can lower the
individual capacitors capacitance while increasing the number of capacitors.

Communication: ISO 15118 is recommended as the communication protocol between
EVs and charging stations.

6. Recommendations for Implementation

None

Bibliography

1. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets Robotics: The KITTI
Dataset," in International Journal of Robotics Research (IJRR), 2013
2. Q. Hu, B. Yang, S. Khalid, W. Xiao, N. Trigoni, and A. Markham, "Towards
Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and
Challenges," in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021.
3. Q.-Y. Zhou, J. Park, and V. Koltun, "Open3D: A Modern Library for 3D Data
Processing," in arXiv:1801.09847, 2018.
4. Apollo Auto [Source code]. https://github.com/ApolloAuto/apollo.
5. Y. Liu, T. Yuan, Y. Wang, Y. Wang, and H. Zhao, "VectorMapNet: End-to-end
Vectorized HD Map Learning," in Proceedings of the 40th International Conference on
Machine Learning, A. Krause et al., Eds., vol. 202, pp. 22352-22369, PMLR, Jul. 23-
29, 2023.

40 | P a g e

6. J. Jeong, , J. Y. Yoon, H. Lee, H. Darweesh, and W. Sung, Tutorial on High-
Definition Map Generation for Automated Driving in Urban Environments, Sensors
2022, 22, 7056
7. IV Tier, MapTools: VectorMapper, [online] Available:
https://maptools.tier4.jp/vector_mapper_description/.
8. W. N. Tun, S. Kim, J.-W. Lee, and H. Darweesh, "Open-Source Tool of Vector
Map for Path Planning in Autoware Autonomous Driving Software," 2019 IEEE
International Conference on Big Data and Smart Computing (BigComp). IEEE, Feb.
2019. doi: 10.1109/bigcomp.2019.8679340.

	Contents
	1. Problem Statement
	2. Research Background
	3. Research Approach
	3.1. High-Definition Maps (HD):
	3.2. Review of Standards and Charging Station Conceptual Design:
	3.3. Resonant Induction Charging Circuit:
	3.4. Electromagnetic Simulation:
	3.5. Communication:

	4. Research Findings and Conclusions
	4.1. High-Definition Maps (HD):
	4.1.1. Code Description
	4.1.2. Integrating Developed Code for Labeling with Apollo Software
	4.1.3. Apollo Installation
	4.1.4. Point Cloud Extraction in Apollo
	4.1.5. Road Network
	4.1.6. Vector Map
	4.1.7. Vector Map Tools
	4.1.8. Route Planning
	4.1.9. Map Matching
	4.1.10. Turn-by-Turn Navigation
	4.1.11. A Proposed Flowchart for Labeling and Navigation of/to Charging Stations:

	4.2. Review of Standards and Charging Station Conceptual Design:
	4.2.1. Design Criterion from Standards:
	4.2.2. Conceptual Designs:
	4.2.3. Receiving Pad (Vehicle Attached (VA)) and Transmitter Pad (Ground Attached (GA)) Designs
	4.2.4. Parking Spot Reservation System:

	4.3. Resonant Induction Charging Circuit
	4.4. Electromagnetic Simulations:
	4.4.1. Simulation Procedure:
	4.4.2. Design, Results, and Discussion:

	4.5. Communication Protocol:

	5. Conclusions
	6. Recommendations for Implementation

Accessibility Report

		Filename:

		STAR In-Road Electric_Report.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 26

		Failed: 3

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Failed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Failed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

